Molecular characterization of the hemin uptake locus (hmu) from Yersinia pestis and analysis of hmu mutants for hemin and hemoprotein utilization.

نویسندگان

  • J M Thompson
  • H A Jones
  • R D Perry
چکیده

Sequence analysis of the hemin uptake locus (hmu) of Yersinia pestis revealed five genes, hmuRSTUV, required for use of hemin and hemoproteins as iron sources. The translated gene products have homologies with proteins of the hemin transport genes of several gram-negative bacteria. Promoters were identified upstream of hmuP'R (p1) and upstream of hmuS (p2); p1, which contains a Fur box, is regulated by iron and Fur, while p2 exhibits weak, but constitutive, activity. HmuR, which has homology with TonB-dependent outer membrane (OM) receptors, is localized to the OM of Y. pestis and is required for utilizing hemin and all hemoproteins under iron-depleted conditions. The proposed ABC transporter, HmuTUV, is necessary for use of hemin, hemin-albumin, and myoglobin, but not hemoglobin, hemoglobin-haptoglobin, or heme-hemopexin, as iron sources. In the absence of HmuTUV, HmuS, a cytoplasmic protein, is involved in use of hemoglobin and heme-hemopexin. In mice, the 50% lethal doses of Y. pestis DeltahmuP'RSTUV mutants injected subcutaneously or retro-orbitally did not differ from that of the Hmu(+) parent strain. Thus, the hmu system is not essential for infection in mice via these routes. Growth studies showed that a DeltahmuP'RSTUV mutant could grow in iron-depleted medium containing high concentrations of hemoglobin, suggesting that an Hmu-independent, lower-affinity hemoglobin uptake system may exist.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yersinia pestis TonB: role in iron, heme, and hemoprotein utilization.

In Yersinia pestis, the siderophore-dependent yersiniabactin (Ybt) iron transport system and heme transport system (Hmu) have putative TonB-dependent outer membrane receptors. Here we demonstrate that hemin uptake and iron utilization from Ybt are TonB dependent. However, the Yfe iron and manganese transport system does not require TonB.

متن کامل

Control of hmu Heme Uptake Genes in Yersinia pseudotuberculosis in Response to Iron Sources

Despite the mammalian host actively sequestering iron to limit pathogenicity, heme (or hemin when oxidized) and hemoproteins serve as important sources of iron for many bloodborne pathogens. The HmuRSTUV hemin uptake system allows Yersinia species to uptake and utilize hemin and hemoproteins as iron sources. HmuR is a TonB-dependent outer membrane receptor for hemin and hemoproteins. HmuTUV com...

متن کامل

Identification and characterization of the hemophore-dependent heme acquisition system of Yersinia pestis.

Yersinia pestis possesses a heme-protein acquisition system (Hmu) that allows it to utilize heme and heme-protein complexes as the sole sources of iron. Analysis of the Y. pestis CO92 genomic sequence revealed a second heme-protein acquisition gene cluster that shares homology with the hemophore-dependent heme acquisition system (Has system) of Serratia marcescens. This locus consisted of the h...

متن کامل

Burkholderia pseudomallei Known Siderophores and Hemin Uptake Are Dispensable for Lethal Murine Melioidosis

Burkholderia pseudomallei is a mostly saprophytic bacterium, but can infect humans where it causes the difficult-to-manage disease melioidosis. Even with proper diagnosis and prompt therapeutic interventions mortality rates still range from >20% in Northern Australia to over 40% in Thailand. Surprisingly little is yet known about how B. pseudomallei infects, invades and survives within its host...

متن کامل

Heme degradation as catalyzed by a recombinant bacterial heme oxygenase (Hmu O) from Corynebacterium diphtheriae.

Hmu O, a heme degradation enzyme in the pathogen Corynebacterium diphtheriae, catalyzes the oxygen-dependent conversion of hemin to biliverdin, carbon monoxide, and free iron. A bacterial expression system using a synthetic gene coding for the 215-amino acid, full-length Hmu O has been constructed. Expressed at very high levels in Escherichia coli BL21, the enzyme binds hemin stoichiometrically...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 67 8  شماره 

صفحات  -

تاریخ انتشار 1999